Quick 2d Plot

Quick2dPlot, or g2d for short, is an open source lightweight plotting pro-
gram designed for live 2d graphical representation of data streams. The program
may be useful for plotting outputs of different software programs, especially in
case when you want to see the plot or a number of plots during calculations or
a data acquisition process.

The program uses no widgets, it is completely command-driven. Commands
and data could be taken from the standard input or one or several files. The
user can, during a data plotting process or when it is finished, switch between
plots, browse entire plot or any portion of it by shifting, expanding or stretching
a visible portion of the plot with help of a few keyboard buttons. The user also
can dynamically select one or several curves on the plot which he/she wants to
see.

The program is written in C, it uses SDL library for plotting and seems to
be reasonably fast. Currently it has been tested under Linux and Cygwin.

Q24 deals with objects of three kinds: variables, curves and plots. It has com-
mands for creating, deleting or modifying any of them. Variables are actually
expandable data buffers. By default, the size of a buffer is unbounded. Curves
correspond to pairs of variables; they have some properties that define how to
show them on the screen, such as color, line style, etc. Plots are collections of
curves. They also have properties, such as type of axes and some others.

Data are read into wvariables line by line from the standard input or from a
source defined by the argument of a read command.

Example of Usage

Suppose, your program test_prog calculates some data columns. All that you
need to see any 2d plots representing these data, is to print the data line by line
to the standard output in your program and prepare a separate file describing
plots and curves that you wish to see.

Let us assume that the program test_prog calculates three variables ¢, z
and y and prints them to the standard output line by line as follows:

<t value> <x value> <y value>

The values may be separated by spaces, commas, or semicolons. Suppose, you
want see during calculations two plots:

Plot1 with two curves z(t) and y(t)

Plot2 with one curve y(z)
In this case the command file may contain the following:

Plots One and Two
delay 2

win 800 600

curve first t x
curve second t y
curve third x y

plot One first second
plot Two third
limits One * -1 1
limits Two -1 1 -1 1
read -t xy

The text in the command file is almost self-explanatory. The first line is a
comment. You may assign any (almost any) names to you variables, curves and
plots. In this example variable names are ¢, z, y, the curves are named as first,
second, and third, and the plots as One and Two.

Two limits commands define boundaries of initially visible area of plots,
min and maz values along horizontal and vertical axes respectively. The star
sign (*) indicates that all the data must fit, in our case, for the plot named One
along the horizontal axis. Here we assume that the variables z and y remain
within (-1, 1) interval. If you don’t know the intervals at all, 1imits commands
may be omitted, and the program will dynamically fit all the data points to the
window. As another option, you can adjust visible portion of the plot during or
after calculations (see Keys section below).

The command win 800 600 defines the size of the plot window. (800 and
600 are default values, so this line can be omitted.)

The command delay 2 means that, each time after reading one line of
data, q2d has to make 2 millisecond delay. Default delay is zero, so, if your
program makes calculation fast, without a delay command you could see only
the final result, not the calculation process.

Command read causes the data to be read from the standard input (denoted
by symbol *-’) into the variables t, x, y.

That is all. Save this command file e.g. as test_prog.q2d. Now you can
run your program like this:

./test_prog | q2d test_prog.q2d

assuming that test_prog and test_prog.q2d are in your current directory.
You will see the window with the first plot named One. Using arrow keys

and arrow keys with CTRL key held down, you can shift or stretch a visible

part of the plot. Keys PageUP and PageDOWN allow to switch from one plot to

another. Key HOME makes plot to fit all calculated data. Key END cancels this
behaviour.

Some examples can be found under the examples/ directory, which is
/usr/local/share/q2d/examples by default. Note that you have to cd into a
particular example directory before trying to run it.

More Examples

To get help on the command line arguments, start the program with -h or
--help argument. To enter the command line mode, run the program without
arguments by typing q2d followed by ENTER key in Linux command prompt.
You will see a command prompt like this:

q2d>

Now you may enter help to inquire commands and keys. You may also enter
some commands to see how they work or execute a command file.

To quit interactive mode press q (or @q, if the program waits for data),
followed by ENTER key.

The simplest way to quickly test the program is to supply plotting commands
as command line arguments, for instance, as follows:

echo -e "0\n1\n4\n9%\n16\n25\n36\n"|q2d -e "curve # y;plot P C;read - # y"

You will see approximation of a parabola graph. Try to use arrow keys and
arrow keys with CTRL modifier to see different portions of the plot.

List of Commands

All commands shall be in the following format:

<command> [<arg 1> ... <arg n>]
Arguments must be space-separated; sometimes the star sign (*) can be used as
an argument, often it means that the command assigns or uses default param-
eters. Any line that begins with a number sign (#) is a comment.

append <plot> <curve 1> .. <curve n>
Appends curves to a plot.

axes (<plot>|*) <style>

Selects axes style for a plot. A star (*) instead of a plot name means that
the command affects default axes style, i.e., all the plots, declared after the
command. Available styles are: grid, boxed, frame, no_axes

axes_fmt "(<plot>|*) [<x format> <y format>]\\Sets or shows a format
string for data values along X and Y axes. If the first argument is the star
symbol (*), the command affects default format strings, otherwise it deals with
format strings for a given plot.

bufsize <size> (<var 1> .. <var n > | *)

Defines maximum size of a buffer. A star (*) sign instead of buffer names means
that the command affects default value, i.e. influences all subsequent variable
declarations. Default is unbounded buffer size (corresponds to zero size).

clear [<var 1>..<var n>]
Clears variables varl .. var n.

colors [<bg color> [<axes color> <curve 1 color> .. <curve n color>]]
Selects a color mode (plot background). Three color modes are available: white
(default), black and custom. To select white or black mode, only one argument

shall be supplied to the command. To define custom color mode it is necessary

to supply following colors as arguments: bg color, axes color and some curve col-

ors. Colors can be: white, black, darkgray, gray, lightgray, darkred,

red, lightred, darkgreen, green, lightgreen, darkblue, blue, lightblue,
yellow, purple, magenta, cyan, orange, lime, brown, pink. Colors will

be assigned in order of declaration of curves. With no arguments the command
shows colors of all declared curves.

curve <name> <var x> <var y> [<style> [<mark>]]]

Declares curves. Shall be supplied a name of the curve, and names of two
variables z var and y var, which correspond to horizontal and vertical axes. As
optional arguments can be supplied style and mark Available curve styles are:
line, point and linepoint. Available marks are: dot, square, big_sqr,
plus, diamond, open_sqr.

del <object name>
Deletes an object - a variable, a curve or a plot.

delay [<t>]

Forces the program to make ¢ millisecond delay (which can be fractional) after
reading each data line. With no arguments the command shows a current delay
value.

exec <file 1> .. <file n>
Executes command files file 1 .. file n.

frame_rate <n>
Defines how many times per second the current plot will be redrawn.
Default value is 10.

help [<command>]
Lists all commands, if no argument is supplied, or describes keys or a specific
command.

limits (<plot>|*) [(<x min> <x max>|*) (<y min> <y max>|*)]

Defines horizontal (z min, x maz), and vertical (y min, y maz) boundaries of
initially visible portion of a plot. A star sign (*) instead of a pair of values
means that = min, x max, or y min, y maz will be dynamically selected to fit
data points. A star sign in place of a plot name makes the command to affect
default values, i.e. all subsequent plot declarations. Instead of two stars as 2-nd
and 3-d arguments it is acceptable to put one, which means that the size of a
visible plot region will fit all data points. This is the default behavior. If the
first value in a pair is prefixed with a dollar sign ($), the corresponding axis
will be set to a "fit last” mode, when the window dynamically shifts in order
to accommodate all last placed points without changing the size, if possible.
Note that no spaces between the dollar sign and the value are allowed. The
command without arguments or with one argument, which can be a star (*) or
a plot name, shows default limits or limits for a given plot.

obj
Prints some information about declared objects.

plot <name> [<curve 1> .. <curve n>]
Declares plot containing curves curve 1 .. curve n.

quit, q

Makes the program to quit.

read (. | - |<file>) <var 1> .. <var n>]

Reads data from a source indicated by the first argument into variables var 1
A star (*) instead of a variable name forces the program to skip corresponding
data column. If a variable name begins with a number sign (#), read command
fills the buffer with data line numbers, starting from 0, instead of reading data
into it. A point (.) as the first argument denotes the the current stream or
file, a dash (-) denotes the standard input. Besides of data, read command
understands any valid command, which must be prefixed with an at sign (@).
There are although specific commands:

@clr - clears all data buffers used by read command,
@abort - cause read command to return,
@view - stop reading data and go to the plot view mode,

@q - quit the program (or go to the next command file).

rd_abt_enable
Enables aborting of data reading via keyboard. Enabled by default.

rd_abt_disable
Disables aborting of data reading via keyboard. By default aborting is enabled.

remove <plot> <curve 1> .. <curve n>
Removes curves from a plot.

restart
Deletes all objects and brings the program into initial state.

save <plot> [<file>]
Saves plot to a file in bmp format (not implemented yet).

step <n>
Makes the program to read every n-th data line only. Default value is 1.

var <name 1> .. <name n>]
Declares variables. Typically use of this command is not necessary, because cor-
responding objects will be created, if needed, with a curve declaration command.

win [<width> <height> [<bpp>]1]
Defines size of the window and optionally bits per pixel.
Defaults are width = 800, height = 600, bpp = 32.

write (<file>|-) [<var 1>..<var n>]
Writes variables to a file or the standard output.

. var n.

Keyboard Commands

PAGE UP, PAGE DOWN
Switch to the next or previous plot.

UP, DOWN, RIGHT, LEFT
Move a visible portion of a plot along vertical or horizontal axis.

J + J s)
Expand or stretch a visible portion of the plot.

CTRL-UP, CTRL-DOWN, CTRL-RIGHT, CTRL-LEFT
Expand or stretch a visible portion of the plot along vertical or horizontal axes.

HOME
Make a visible portion of the plot to fit all data points (”fit all” mode).

SPACE
Pause/continue plotting, without data loss.

ESCAPE
Exit from a plot preview mode and go to the next command.

Q, q
Quit the program.

Please send bugs, comments, and suggestions to lang21@yandex.ru

